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Fig. 3—w-B curve for angularly symmetric mode.
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IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

The oscillation mechanism can be ex-
plained in terms of reflections from objects
situated along the plasma column. This is
verified by the discreteness of the oscillation
frequencies shown in Fig. 4(a). This graph
shows that as the cyclotron frequency is
varied, oscillations can only occur when the
reflected wave adds constructively to the
forward wave. Fig. 4(b) shows the variation
of oscillation frequency with beam voltage
when the cyclotron frequency is held con-
stant. It is continuous because the range of
oscillation frequencies is very small, and the
entire line actually corresponds to a single

Sepfember

If another medium of the same refractive
index # is placed at a distance d from the
first interface (Fig. 1), energyv will be trans-
ferred into this new medium. The amount
of coupled energy is a function of the dis-
tance d in terms of the wavelength.

For the case of a plane wave incident on
the interface (the dielectric sheets extending
to infinity), the amount of energy coupled
to the new medium can be obtained an-
alytically. Here we just state the results
which are identical to Garnham’s.

When the electric field is parallel to the
plane of incidence
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Fig. +—Vanations of output frequency.

formed analytically, using the determinantal
equation given by Trivelpiece.?)

At frequencies above w, Trivelpiece?® de-
scribes the mode as a surface wave, since
charge builds up at the edge of the plasma
and field discontinuities exist accordingly.
In the surface wave region, the axial electric
field is finite on the axis, and increases radi-
ally to the plasma edge. It then discontinu-
ously falls to zero at the conducting wall.
The coupling impedance on the axis of the
plasma has been calculated to be slightly
less than 1500 chms for the actual operating
parameters of this experiment.

3 A, W. Trivelpiece, “Slow-Wave Propagation in
Plasma Wavegudes,” C.I.T. Electron Tube and
Microwave Lab., California Inst. of Technology,
Pasadena, Calif., Tech. Rept. No. 7; 1958,

point in Fig. 4(a). The increase of frequency
for increasing voltage is seemingly incongru-
ous with the voltage tuning characteristic
of Fig. 3, but it should be remembered that
wp varies with beam voltage for beam-gen-
erated plasma systems. Thus, for increased
voltage, the upper cutoff frequency also in-
creases, and the intersection of the beam
line with the new -8 curve will occur at a
slightly higher frequency.

In summary, it is seen that an electron
beam interacts very strongly with the sur-
face wave mode of a plasma column; this
interaction converts dc beam energy into
narrow-band RF energy in the plasma.
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A Double-Prism Attenuator for
Millimeter Waves*

A double-prism attenuator, similar to
the one built by Garnham?! for use at 35
Gec, was built in the laboratory for use at 100
Ge and above. This attenuator utilizes the
well-known fact that a wave which is inci-
dent on the interface between two dielec-
trics at an angle greater than the critical
angle is totally reflected. If the wave isin a
medium of index of refraction #» and the
other medium is free space the critical angle
is

f. = sin”!—-
n

* Received April 25, 1962, This research was sup-
ported by the Air Force Systems Command, United
States Air Force.

1 R. H. Garnham, “Optical and Quasi-Optical
Transmission Techniques and Components Systems
for Millimeter Wavelengths,” Roval Radar Estab-
lxsglment, GT. Malvern, Eng., Rept. No. 3020; March,
1959.

where
2w,
o = T(eSIHZO— 1)”2. ¢

There are corresponding equations for the
case of perpendicular polarization.

A laboratory model of the double-prism
attenuator was made of polystyrene. Each
prism was half of a 2 inch cube (Fig. 2). The
prism tolerance was +0.0015 inch.

The two prisms were mounted on a brass
stand; one was movable and the other fixed.
The base of the movable prism slid on two
steel rods, its movement being controlled
by a micrometer head. Fig. 3 shows the
actual attenuator.

Although we realized that the matching
of the outer surfaces was a factor necessary
in obtaining good agreement between ex-
perimental and theoretical results, we neg-
lected doing so because it would restrict
the attenuator to a limited frequency range.
If the surfaces are not perfectly flat and
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Fig. 2.—Double-prism attenuator.
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parallel another error is introduced which
will increase with frequency.

The response of the detector used in the
attenuator measurements followed a square
law. This was determined by use of a vari-
able attenuator. This attenuator had been
carefully calibrated against a Golay cell
detector by the substitution method. The
theoretical results and the measured points
for one polarization in the 140 Gc and 210
Gec regions are shown in Figs. 4 and 5. The
theoretical results were obtained from (1)
and (2) using 2.52 as the dielectric constant
of polystyrene? and 45° as the value for 6.
The measured points of the transmitted

Fig. 3.—Photograph of double-prism attenuator.
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Fig. 5.—Reflection as a function of d/x
for E parallel.

2 J, C. Wiltse, ef al., “Quasi-Optical Components
and Surface Waveguxdes for the 100 to 300 Kmc Fre-
quency Range,” Electronic Communications, Inc.,
Timoninm, Md., Sci. Rept. No. 2; November, 1960

Correspondence

and reflected wave for parallel polarization
were within 1 db of the theoretical values.
The difference can be attributed to the fol-
lowing: the lack of matched surfaces, sur-
face tolerances on the coupling surfaces,
and diffraction effects.

In conclusion, we can say that it is pos-
sible to build a double-prism attenuator
for millimeter wave applications with good
performance. Such a device can also be used
as a variable coupler. If greater precision is
desired in the attenuator, the outer surfaces
of the prisms should be matched into free
space; tolerances of less than +0.0015 inch
must be kept and the effects of diffraction
should be included.
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Application of Sampling Theorem
to the Synthesis of Transmission
Line Tapers and Antenna
Radiation Patterns*

In this note it is demonstrated how the
sampling theorem may be used to reduce
the problems of transmission line taper
synthesis and antenna aperture field syn-
thesis to that of optimizing a polynomial.
In both cases the problem may be stated
mathematically in the following form: find
the function g(x) which is zero outside the
domain — 7 <x <~ that will yield a desired
f(u) where f(u) is given by the Fourier
transform of g(x), 7.e.,

5w = gz, M

In the transmission line taper problem
g(x) is proportional to the derivative of the
logarithm of the taper impedance and f(u)
is proportional to the reflection coefficient,
as a function of frequency, at the taper in-
put. It is assumed that the taper impedance
varies slowly enough so that the square of
the reflection coefficient can be neglected.!?
In the antenna problem g(x) is proportional
to the aperture field for the one dimensional
case and f(u) is proportional to the radiation
pattern.?

Let g(x) be expressed as the Fourier se-
ries

g = 3 cueie @

Nem—on

* Received April 25, 1962.

1 F, Bolinder “Fourier transforms in the theory of
inhomogenous transmission lines,” Proc., IRE (Corre-
spondence, vol. 38, o 1354; November 1950.

2R, E. Collm “The optlmum transmission line
matching section,” Proc. IRE, vol. 44, pp. 539-549;
April, 1956,

3 T, T. Taylor, “Design of line-source antennas for
narrow beamwidth and low side lobes,” IRE TRANS.
ON ANTENNAS AND PrROPAGATION, vol. AP-3, pp.
16-28; January, 1955.
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From (1) it is found that
fluw) = 2% i Cn Sli&(uj—_;;)—@ (3a)
f(n) = 2wc, (3b)

which is the sampling theorem. An arbitrary
f(u) would, in general, require a g(x) which
is nonzero over — o <x< «. If, however, a
set of coefficients was determined by (3b)
then the resultant f(u) generated by this
g(x) which is zero outside the domain
—n<x<m would be equal to the arbitrarily
specified f(u) at the sampling points and
deviate by some finite amount in between.
The practical problem is thus seen to be the
one specifying an f(u) that can be produced
by a g(x) which is zero outside the domain
—a <x <. This may be done as follows.
Eq. (3a) may be written as

flu) = 27 Z cn( L)"iliwl

n=——ow '14 —_ n)
sinwy 2
=20 R N el ()
T e — %

In most practical cases it is desirable to
limit the expansion of g(x) to a finite number
of terms, say 2N+1 terms. From (3b) it is
seen that this may be accomplished by
specifying f(#) to have zeroes at all but
2N+41 integer values of u. For convenience
it will be assumed here that f(u)=0 for
|#] =#>N. Then (4) becomes

sin

7 —— }{j c(—1)n —4‘4—;; - (5)

TU  p=—N

flu) =

This expression is recognized as the partial
fraction expansion of some function of the
form

N

Pu) H (u* — n?)

n=1
where P(u) is an arbitrary polynomial of
degree 2N in #, 7.e.,
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where the prime means omission of the
term m =0, Thus (5) becomes

sin 7o

2 ()

S g
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Jw) =

Any f(u) of this form can be generated by a
g(x) which is zero outside the finite domain



